CARBON PRINTING

Demonstration Program: CarbonPrinting

The Carbon Printing Manager

Theinclusion of the word "Carbon" in thetitle of this chapter is quite deliberate, reflecting the fact that, in
Carbon, the original Printing M anager has been replaced by the new Carbon Printing Manager. The
Carbon Printing Manager provides a bridge between the fundamentally different Mac OS X and Mac OS
8/9 printing architectures.

When running on Mac OS 8/9, Carbon applications use Classic printer drivers and, generally speaking,
Carbon Printing Manager functions simply call through to their original Printing Manager counterparts.
When running on Mac OS X, Carbon applications use the new printing architecture and print through
different drivers.

The most significant difference between the old Printing Manager and the Carbon Printing Manager is that
all data structures are now opague. Accessor functions are provided to access the information in these
objects.

Printing Sessions

In Carbon Printing Manager parlance, an individual printing task is known as asession. Carbon
applications running on Mac OS X can initiate multiple simultaneous printing sessions, each of which is
completely independent of the other. On Mac OS 8/9, printing sessions are also supported, but with the
limitation that an application can only ever have one printing session running.

Categories of Carbon Printing Manager Functions

The Carbon Printing Manager APl comprises:
Session functions.
Non-session functions.
Universal functions.

The non-session functions do not support simultaneous printing sessions and inherit many of the
limitations of the original Printing Manager. For this reason, Apple strongly recommends that the session
functions be used instead. (Session and non-session functions must not be mixed within an application.)
Accordingly, this chapter addresses the session and universal functions only.

Carbon Printing Version 1.0

Printer Drivers

Each type of printer hasits own printer driver. Printer drivers performs the actual printing, trandating
system software drawing functions as required and send the translated instructions and data to the printer.
On Mac OS 8/9, printer drivers are stored in printer resour cefiles.

Thecurrent printer (on Mac OS 8/9, the printer selected by the user in the Chooser) is the printer driver
that actually implements the functions defined by the Carbon Printing Manager.

Types and Characteristics of Printer Drivers

In general, there are two types of printer driver:

QuickDraw printer drivers.

PostScript printer drivers.

QuickDraw Printers

QuickDraw printers use QuickDraw to render images, which are then sent to the printer as bitmaps or pixel
maps. Since they rely on the rendering capabilities of the Macintosh computer, QuickDraw printers are not
required to have any intelligent rendering capabilities. Instead, they simply accept instructions from the
printer driver to place dots on the page in specified places.

PostScript Printers

Unlike QuickDraw printers, PostScript printers have their own rendering capabilities. Instead of rendering
the entire page on the Macintosh computer and sending all the pixels to the printer, PostScript printer
drivers convert QuickDraw operations into equivalent PostScript operations and send the resulting drawing
commands directly to the printer. The printer then renders the images by interpreting these commands. In
this way, image processing is offloaded from the computer.

Background Printing and Spool Files

Most printer drivers allow usersto specify background printing, which alows a user to work with an
application while documents are printing in the background. On Mac OS 8/9, these printer drivers send
printing data to a spool file in the PrintMonitor Documents folder in the System Folder.

Page and Paper Rectangles

Because of an individual printer's mechanical limitations, the printable area of a pageis ordinarily less than
the physical size of the paper.

Page Rectangle

The page rectangle represents the printable area. Asshown at Fig 1, the upper-left coordinates of the page
rectangle are always (0,0) and the lower-right coordinates represent the maximum printable area height and
width for agiven printer.

Paper Rectangle

The paper rectangle (see Fig 1) represents the physical paper size expressed in the same coordinate
system as the page rectangle. The upper left coordinates of the paper rectangle are thus usually negative.

Version 1.0 Carbon Printing

00

PAPER RECTANGLE —| ¢—— PAGE RECTANGLE

LOWER-RIGHT
COORDINATES DEPEND
ON PAPER SIZE AND
| INDIVIDUAL PRINTER
CAPABILITIES

FIG 1-PAGE AND PAPER RECTANGLES

Page Setup Dialogs and Print Dialogs

Page Setup Dialog

In response to the user choosing the Page SetupE item from the File menu, your application should display
the Page Setup dialog. For Mac OS 8/9, each printer driver defines its own Page Setup dialog. For Mac
OS X, printer manufacturers can extend the standard Page Setup dialog with options specific to their
printer. Fig 2 shows the Page Setup dialog.

P] Fiig SRt
Lovsr¥riter 8 Poge 5 etup
iR i el RS seromgr | P AN Rl G =1
o B (i ||.'\.|.|--v:l.m-_r & arTu for ['
Pager: [Mddmal 4] ferark: Frimie:
! : Paper Sas: | LB Lo i
rl N:Mulm IEI 280 i, LLAD W
s -_ VAL I'I‘ IE Ta
3 b L
h"'IE : T tarel) SO
LASERWRITER 8 PRINTER — MAC OS 8/9 MAC OS X

FIG 2- PAGE SETUP DIALOG

Displaying the Page Setup Dialog and Accessing Settings

PMSessionPageSetupDialog IS used to display the Page Setup dialog. Thisfunction handlesal user
interaction until the user clicks the oK or cancel button.

Settings made in a Page Setup dialog are stored in a PMPageFormat Object (see below). Y our application can
use accessor functions to extract information, such as orientation and scaling settings, from this object.

Print Dialog

In response to the user choosing the PrintE item in the File menu, your application should display the Print
dialog. For Mac OS 8/9, each printer driver definesits own Print dialog. For Mac OS X, printer
manufacturers can extend the standard Print dialog with options specific to their printer. Fig 2 showsthe
Print dialog.

Carbon Printing Version 1.0

Praen [Lasenanter # e | Prisy
| e et el | Faremr We Prevee Seketes "
CHipl s |:| w7 Y Yatiinge | Savaliid it
TLTTR 1T) Coiies b Pages ¥
o Frome | I -5
e ¥ ot
Pajuer Y 0d T8 | A0 Sl paaipst il i Tapdeme il
ol P g e | Foges Al
& Fram T
LI AR e i Frewnw | 7 el
Sawr ipttingn | Cancr | | Frine I
LASERWRITER 8 PRINTER — MAC OS 8/9 MAC OS X

FIG 3 - PRINT DIALOG

Displaying the Print Dialog and Accessing Settings

PMSessionPrintDialog iS used to display the Print dialog. Thisfunction handles all user interaction until the
user clicks the Print or cancel button.

Settings made in a Print dialog are stored in apMprintSettings object (see below). Y our application can use
accessor functions to extract information, such as the page numbersto print, from this object.

Customised Page Setup and Print Dialogs

Many applications add items to the basic Page Setup and Print dialogs so asto provide the user with
additional control over printing operations within that application.

If you wish to customise the Page Setup and/or Print dialogs so as to solicit additional information from the
user, one option isto use what is sometimes referred to as the AppendDITL method. This requiresthat you
provide an initialisation function, an item evaluation function and, possibly, an event filter function. A
universal procedure pointer to the initialisation function is passed as a parameter in the functions
PMSessionPageSetupDialogMain and PMSessionPrintDialogMain, which are used to display, respectively,
customised Page Setup and customised Print dialogs. (See Customising the Page Setup and Print Dialogs,
below.)

Preserving the User's Printing Settings

The only information you should preserve each time the user prints the document should be that obtained
viathe Page Setup dialog. The information supplied by the user through the Print dialog should pertain to
the document only while the document prints, and you should not re-use this information if the user prints
the document again.

Y ou can preserve the information obtained via the Page Setup dialog by associating the PMpageFormat oObject
with the relevant document's window and by saving it to that document file's data or resource fork when
thefileisclosed. (See Saving and Retrieving a Page Format Object, below.)

Printing Sessions — The PMPrintSession Object

A call to PMCreateSession creates a context for printing operations, called a printing session, and initialises a
PMPrintSession object.

The PMPageFormat and PMPrintSettings Objects

PMPageFormat Object

The PMPageFormat Object stores information about how the pages of a document should be printed, for
example, on what paper size and in what orientation (landscape or portrait).

Version 1.0 Carbon Printing

Y ou use the function PMCreatePageFormat tO Create an instance of this opaque object. PMCreatePageFormat
returns a reference to the object, which is created empty of settings. When your application displays a
Page Setup dialog, and the user clicks the ok button to dismiss the dialog, the Carbon Printing Manager
saves the settings in the PMPageFormat Object.

Aswill be seen, PMPageFormat Objects are extensible, meaning that your application can store additional data
in them and that your application should never assume that they are of afixed size.

Accessor Functions

The following describes accessor functions you can use to obtain information contained within

PMPageFormat Objects.

Function

Description

PMGetAdjustedPaperRect

Gets the paper size.
On return, the paperRect parameter contains a rectangle describing the size of the
paper after scaling, application drawing resolution and orientation settings are applied.
The paperRect parameter is of type PMRect:

struct PMRect

double top;
double left;
double right
double bottom;
3
The size returned isin your application drawing resolution, which you can obtain by
calling PMGetResolution.

PMGetAdjustedPageRect

Getsthe page size.

On return, the pageRect parameter contains a rectangle describing the size of the page
after scaling, application drawing resolution, and orientation settings are applied. The
pageRect parameter is of type PMrRect. The size returned isin your application drawing
resolution, which you can obtain by calling PMGetResolution.

PMGetUnadjustedPaperRect

Gets the true size of the paper in points, unaffected by rotation, resolution, or scaling.

PMSetUnadjustedPaperRect

Sets printing to a particular paper size, in points, unaffected by rotation, resolution, or
scaling.

This function allows applications to request a particular paper size. If the driver
cannot handle the specified size an error of kPMvalueOutOfRange is returned. If the size
is accepted, the application should still call PMGetUnadjustedPaperRect to verify.

PMGetUnadjustedPageRect

Gets the size of the imageable areain points, unaffected by rotation, resolution, or
scaling.

PMGetResolution

Gets the application's current drawing resolution.
On return, the res parameter contains a pointer to a structure of type PMResolution,
which describes the resolution at which the Carbon Printing Manager expects your
application to render images:

struct PMResolution

double hRes; // The horizontal resolution in dpi.
double vRes; // The vertical resolution in dpi.

1;

PMSetResolution

Sets the application's drawing resolution.

PMGetOrientation

Gets the current page orientation setting.

On return, the orientation parameter contains a pointer to a variable of type
PMOrientation, which describes the current page orientation:
kPMPortrait 1
kPMLandscape
kPMReversePortrait
kPMReverselLandscape

2
3
4

PMSetOrientation

Sets the page orientation for printing.

PMGetScale

Returns the scaling factor currently applied to the page and paper rectangles.

PMSetScale

Sets print scaling.

PMGetPageFormatExtendedData
PMSetPageFormatExtendedData

Gets additional page format data previously stored by your application.
Stores application-supplied datain a PMPageFormat Object.

Version 1.0

Carbon Printing

Assigning Default Parameters

A call to PMSessionDefaultPageFormat Will assign default parameters to a PMPageFormat object for the
specified printing session.

Validating a PMPageFormat Object

A call to PMSessionValidatePageFormat Will validate a PMPageFormat Object's parameters within the context of
the specified printing session. true isreturned in the result parameter if any parameters had to be changed.

PMPrintSettings Object

The pvPrintSettings object stores information such as the number of copies, range of pagesto print, etc.,
for aparticular printing session.

Y ou use the function pMcreatePrintSettings to create an instance of this opaque object.
PMCreatePrintSettings returns areference to the object, which is created empty of settings. When your
application displays a Print dialog, and the user clicks the Print button to dismiss the dialog, the Carbon
Printing Manager saves the settings in the PMPrintSettings object.

Aswill be seen, pMPrintSettings Objects are extensible, meaning that your applications can store additional
datain them and that your application should never assume that they are of afixed size.

Accessor Functions

The following describes the accessor functions you can use to obtain information contained within
PMPrintSettings Objects.

Function Description

PMGetFirstPage Gets the starting page number of the pages to be printed.

PMSetFirstPage Sets the page number of the first page to be printed.

PMGetLastPage Gets the last page number of the pagesto be printed.

PMSetLastPage Sets the page number of the first page to be printed.

PMGetPageRange Gets the valid range of pages to print, as previously set by pMSetPageRange. |If
none was set by the application, the default range (1-32000) is returned.

PMSetPageRange Setsthe valid range of pagesto be printed. On Mac OS X, if the user entersa

vaue outside thisrange in the Print dialog, an alert message is displayed. This
feature is not supported on Mac OS 8/9.

The relationship between the page range set by the application using
PMSetPageRange and the first and last pages set by the user in the Print dialog (and
retrieved by PMGetFirstPage and PMGetLastPage) iS shown at Fig 4.

MIN PAGE RANGE ~ FIRST PAGE LAST PAGE MAX PAGE RANGE

1 20 45 100

FIG 4 - FIRST PAGE, LAST PAGE, AND PAGE RANGE (EXAMPLE)

PMGetCopies Gets the number of copies to be printed.

PMSetCopies Sets the default value to be displayed for the number of copies to be printed.
PMGetPrintSettingsExtendedData Gets additional print settings previously saved by your application.
PMSetPrintSettingsExtendedData Stores application-supplied datain a PMPrintSettings object.

Note: You pass true inthe lock parameter of the functions PMSetCopies, PMSetFirstPage, and PMSetLastPage if you wish to
lock, respectively, the number-of-copies, first-page, and last-page fields in the Print dialog. Passing true only affects printer
driversfor Mac OS X and LaserWriter printer drivers version 8.7 and later. If you pass true for other printer drivers, these
functions will return kPMLockIgnored.

Assigning Default Parameters

A call to PMSessionDefaultPrintSettings Will assign default parameters to a PMPrintSettings object for the
specified printing session.

Version 1.0 Carbon Printing

Validating a PMPrintSettings Object

A call to PMSessionValidatePrintSettings Will validate a PMPrintSettings object's parameters within the
context of the specified printing session. true isreturned in the result parameter if any parameters had to
be changed.

Printing a Document

The following describes a typical approach to printing a document.

When the User Chooses Page Setup... From the File Menu
When the user invokes the Page Setup dialog:
Call afunction which:

Calls PMCreateSession to create a PMPrintSession Object, and associates that object with the
document's window.

If aPMPageFormat Object has not previously been created and associated with the document's
window:

Calls PMCreatePageFormat tO Create a PMPageFormat Object.
Calls pMSessionDefaul tPageFormat t0 assign default parameters to the PMPageFormat Object.
Associates the PMPageFormat Object with the document's window.

If aPMPageFormat Object has previously been created and associated with the document's window,
calls PMSessionValidatePageFormat tO validate the PMPageFormat Object's parameters within the
context of this printing session.

Call pMsessionPageSetupDialog to present the Page Setup dialog, handle all user interaction within the
dialog, and record the user's settings in the PMPageFormat Object.

When the user dismisses the Page Setup dialog, call PMRelease to release the PMPrintSession object.

When the User Chooses Print... From the File Menu

When the user invokes the Print dialog:
Aswhen the Page Setup dialog is invoked (see above), call afunction which:

Creates a PMPrintSession object and associates it with the document's window.

Either creates a PMPageFormat Object, assigns default parametersto it, and associates it with the
document's window or, if this has previously been done, validates the existing pMPageFormat
object's parameters.

Call PMCreatePrintSettings tO Create aPMPrintSettings object.
Call PMSessionDefaultPrintSettings tO assign default parameters to the PMPrintSettings object.
Associate the PMPrintSettings object with the document's window.
For Mac OS X only:
Call pusetPageRange to set the valid range of pages that can be printed.

Call pMsetFirstPage and PMSetLastPage t0 set the default first and last pages to be printed, as
displayed in the From and To fields of the Print dialog. (To clear the From and To fields and
select the Al radio button, pass kPMPrintAllPages in the PMSetLastPage call.)

Call pMsessionPrintDialog to present the Print dialog, handle all user interaction within the dialog,
and record the user's settings in the PMPrintSettings object.

Carbon Printing Version 1.0

If the user clicks the cancel button in the Print dialog, call PMRelease t0 release the PMPrintSettings
and pMPrintSession objects, and disassociate them from the document's window.

If the user clicks the Print button in the Print dialog, call your application's printing loop function.

The Printing Loop Function

The printing loop is the part of your application's code that performs the actua printing. The function
containing the printing loop should perform the following actions:

Call pMGetFirstPage and PMGetLastPage to get the first and last pagesto print, as entered by the user in
the Print dialog.

Call afunction which calculates the actual number of pages in the document. If necessary, adjust
the value in the variable containing the last page as returned by PMGetLastPage.

For Mac OS X, call pMsetFirstPage and PMSetLastPage t0 tell the Carbon Printing Manager which
pages will be spooled so that the progress dialog can display an accurate page count. Passin the
values returned by the pMGetFirstPage and PMGetLastPage calls, the latter adjusted as necessary.

Call pMsessionBeginDocument tO create an instance of aPMPrintContext object and thus establish a
graphics context for imaging the document. (Aswill be seen, afunction exists to obtain the
graphics port (that is, the printing port) associated with this object.)

Print the pages. In the page-printing loop, all of the pages in the document should be spooled and
the Carbon Printing Manager relied upon to print the correct page range as specified in the Print
dialog. Note that your printing loop does not have to concern itself with the number of copies, since
thisis handled automatically by the Carbon Printing Manager. The pages loop should:

Call pMsessionBeginPage to initialise the printing port. (Note that, for Mac OS 8/9 only, you can
pass a scaling (bounding) rectangle in the pageFrame parameter, in which case all items drawn in
the printing port will be scaled to fit this page rectangle. If no scaling isrequired, passNuLL in
the pageFrame parameter.)

Call GetPort to save the current graphics port, call PMSessionGetGraphicsContext t0 obtain the
current printing port, and call setport to set that port as the current port.

Call afunction which draws the relevant page in the printing port, then call setport to set the
port saved by the GetpPort cal asthe current port.

Call pMsessionEndPage tO print the page.

When all copies of all pages have been printed, call PMSessionEndDocument to close the printing
graphics port.

Call PMRelease tO release the PMPrintSettings and PMPrintSession Objects.

Call Sequence And Scope

When writing functions which call Carbon Printing Manager functions, bear in mind that the Carbon
Printing Manager enforces a sequence of stepsin the printing loop, and defines avalid scope for each
Carbon Printing manager function. Functions used out of sequence will return aresult code of
kPMOutOfScope.

Sequence and Scope: Session Functions

The following, in which scope level is represented by indentation, shows calling sequence and scope
requirements of the main session printing functions. It shows, for example, that you can call
PMSessionGetGraphicsContext onIy after calling PMSessionBeginPage.

Version 1.0 Carbon Printing

PMCreateSession
PMSessionDefaultPageFormat
PMSessionValidatePageFormat
PMSessionDefaultPrintSettings
PMSessionValidatePrintSettings
PMSessionError

PMSessionPageSetupDialog

PMSessionPrintDialog
PMSessionPageSetupDialogInit These functions must be called
PMSessionPrintDialogInit before PMSessionBeginDocument

PMSessionPrintDialogMain
PMSessionPageSetupDialogMain

PMSessionBeginDocument
PMSessionBeginPage
PMSessionGetGraphicsContext
PMSessionEndPage
PMSessionEndDocument

In general, functions may be called in any order with respect to other functions at the same or lower scope
level.

Sequence and Scope: Universal Functions

The following are the main universal functions which have no calling sequence or scope, and which may
generaly be used anywhere in your printing code:

PMCreatePageFormat PMGetLastPage PMGetScale

PMFlattenPageFormat PMSetLastPage PMSetScale
PMUnflattenPageFormat PMGetCopies PMGetResolution
PMCreatePrintSettings PMSetCopies PMSetResolution
PMFlattenPrintSettings PMGetAdjustedPaperRect PMGetPageFormatExtendedData
PMUnflattenPrintSettings PMGetAdjustedPageRect PMSetPageFormatExtendedData
PMGetPageRange PMGetUnadjustedPageRect PMGetPrintSettingsExtendedData
PMSetPageRange PMSetUnadjustedPaperRect PMSetPrintSettingsExtendedData
PMGetFirstPage PMGetOrientation

PMSetFirstPage PMSetOrientation

Handling Printing Errors

The Carbon Printing Manager must necessarily bear the heavy burden of maintaining backward
compatibility with early printer models and of maintaining compatibility with a great many existing printer
drivers. For thisreason, you must be especially wary of, and defensive about, possible error conditions
when using Carbon Printing Manager functions.

Do not display an alert to report an error until the end of the printing loop. Thisisimportant for two
reasons:

If you display an alert in the middle of a printing loop, it could cause errors that might terminate an
otherwise normal printing operation.

The printer driver may have already displayed its own aert reporting the error.

Text on the Screen and the Printed Page

At the application level, printing on the Macintosh computer is not fundamentally different from drawing
on the screen. That said, printing text poses special challenges.

A common complication results from the difference in resolution and pixel size between screen and printer.
QuickDraw measurements are theoretically in terms of points, which are nominally equivalent to screen
pixels. High resolution printers have very much smaller pixels, although printer drivers are expected to
take thisinto account so that the same QuickDraw calls will produce text lines of the same width on the
screen and on the printer. Nevertheless, this higher resolution, and the fact that printers may use different

Carbon Printing Version 1.0

fonts from those used for screen display, can result in some loss of fidelity from the screen to the printed
page. Inthisregard, the following is relevant:

QuickDraw places text glyphs' on the screen at screen pixel intervals, whereas a printer can provide
much finer placements on the printed page. This situation presents a choice between optimising the
appearance of text on the screen or on the printed page. In effect, that choice is whether to specify
fractional glyph widths or integer glyph widths.

Fractional glyph widths are measurements of a glyph's width which can include fractions of a pixel.
Using fractional glyph widths improves the appearance of printed text because it makes it possible
for the printer, with its very high resolution, to print with better spacing. However, because screen
glyphs are made up of whole pixels, QuickDraw cannot draw a fractional glyph on the screen, so it
rounds off the fractional parts. Thisresultsin some degradation in the appearance of the text, in
terms of character spacing, on the screen.

The aternative (integer glyph widths) gives more pleasing screen results because the characters are
drawn with regular pixel spacing, but this may possibly be at the price of a printed page which is
typographically unacceptable.

The Font Manager function setFractknable is used to turn fractional glyph widths on and off.
SetFractEnable affects functions which draw text and which calculate text and character widths.

Printer drivers attempt to reproduce faithfully the text formatting as drawn by QuickDraw on the
screen, including keeping the same intended character spacing, line breaks and page breaks.
However, because printers can have resident fonts that are different from the fonts that QuickDraw
uses, because the drivers may handle text layout somewhat differently than QuickDraw, and because
font metrics do not always scale linearly, fidelity may not always be achieved. Typically, identical
line breaks and page breaks can be maintained, but character spacing can be noticeably different.

Customising the Page Setup and Print Dialogs

As previously stated, you may want to add additional options to the Page Setup and Print dialogs so that
the user can further customise the printing process. For example, you might want to add a"skip blank
pages' checkbox to a Print dialog.

Note

On Mac OS X, the printing dialog extension (PDE) mechanism may be used to extend the Page Setup and Print
dialogs. The PDE mechanism provides great flexibility in extending printing dialogs. However, because the
PDE mechanism applies only to Mac OS X, that method of extending Page Setup and Print dialogsis not
addressed in this book. The method addressed is sometimes referred to as the AppendDI TL method.

A limitation of the AppendDITL method isthat it prevents you from creating the Page Setup and Print dialogs as
window-modal (sheet) dialogs. This limitation does not apply when the PDE method is used.

The functions PMSessionPageSetupDialogMain and PMSessionPrintDialogMain are used to display Page Setup
and Print dialogs customised using the AppendDITL method.

The PMDialog Object

Y our application uses areference to aPmpialog object when creating custom Page Setup and Print dialogs.
The functions PMSessionPageSetupDialogInit and PMSessionPrintDialogInit functionsare used to create and
initialise instances of this opagque object. Taking the reference to this object as a parameter, the function
PMGetDialogPtr returns a pointer to the dialog structure.

' A glyphisthe visual representation of acharacter. See Chapter 21.

Version 1.0 Carbon Printing

Customising a Print Dialog

As an example, to customise a Print dialog, you must modify the contents of the PmMbiatlog object before the
dialog is drawn on the screen. Thisinvolves:

Providing a 'p1TL" resource containing the required additional items.
Defining an item evaluation function that handles events involving the additional items.
Defining and installing an initialisation function that:

Calls appendDITL to append the additional items to the dialog.

Using PMGetItemProc, gets the universal procedure pointer to the printer driver'sitem evaluation
function from the PMbialog oObject, and savesit. (The printer driver'sitem evaluation function
will need to be called from your item evaluation function to handle hits on the dialog's standard
items.)

Calls pMsetItemProc t0 Set a universal procedure pointer to your item evaluation function in the
PMDialog Object.

If required, defining a custom event filter function and setting a universal procedure pointer toitin
the pMDialog Object using PMSetModalFilterProc.

A universal procedure pointer to the initialisation function should then be passed in the myInitpProc
parameter of PMSessionPrintDialogMain, Which displays the customised Print dialog.

Displaying Page Setup and Print Dialogs as Window-Modal (Sheet) Dialogs

To cause Page Setup and Print dialogs to be created as window-modal (sheet) dialogs on Mac OS X, you
should call the function pMSessionUseSheets immediately before the calls to pMSessionPageSetupbialog and
PMSessionPrintDialog, passing the window reference for the parent window in the documentWindow parameter
and a universal procedure pointer to an application-defined (callback) function in the sheetDoneProc
parameter. The callback function should perform the actions required immediately following dismissal of
the dialog, and should be declared like this:

void myPageSetupSheetDoneFunction(PMPrintSession printSession, WindowRef documentWindow,
Boolean accepted);

The accepted formal parameter will be set to true if the Print/0K push button is clicked and to fatse if the
Cancel push button is clicked.

The functions NewPMsheetDoneUPP and DisposePMSheetDoneUPP create and dispose of the universal procedure
pointers.

Saving and Retrieving a Page Format Object

As previously stated, the only information you should preserve each time the user prints a document should
be that obtained via the Page Setup dialog. Ordinarily, therefore, you will want your application to save
the flattened PMPageFormat Object associated with a specific document in either the data fork or the resource
fork of that document's file when you save the document itself.

Y ou can store additional data inside the pMpageFormat Object beforeiit is flattened and saved by calling
PMSetPageFormatExtendedData, Whose parameters include a unique code identifying the data, the size of the
data, and a pointer to the data. When the flattened pMPageFormat Object is retrieved and unflattened, you can
obtain this data by calling PMGetPageFormatExtendedData.

Saving a flattened PMPageFormat Object to the resource fork of afile, and retrieving the flattened object from
thefile, is demonstrated in the demonstration program associated with Chapter 19.

Carbon Printing Version 1.0

Printing From the Finder — Mac OS 8/9

Users generally print documents that are open on the screen one at atime while the application that created
the document is running. However, on Mac OS 8/9, users can aso print one or more documents from the
Finder by selecting the documents and choosing Printé from the Finder's File menu. This causes the Finder
to launch the application and passit arequired Apple event (the Print Documents event) indicating the
documentsto be printed. In response to a Print Documents event, your application should:

Use saved or default page setup settings instead of displaying the Page Setup dialog.

Display the Print dialog once only, and use PMCopyPrintSettings to apply the information specified
by the user to all of the selected documents.

Remain open unless and until the Finder sends it a Quit Application event.

Version 1.0 Carbon Printing

Main Carbon Printing Manager Constants, Data Types and Functions

Constants

Unwanted Data

KPMNoData = NULL
KPMDontWantSize = NULL
KPMDontWantData = NULL
KPMDontWantBoolean = NULL
KPMNoPrintSettings = NULL
kPMNoPageFormat = NULL
kPMNoReference = NULL
Page Orientation

kPMPortrait =1
kPMLandscape =2
kPMReversePortrait =3
kPMReverselLandscape =4
User Cancelled

kPMCancel = 128
For PMSetPageRange and PMSetLastPage
kPMPrintAllPages = -1
Result Codes

kPMNoError =0
kPMGeneralError = -30870
kPMOutOfScope = -30871
kPMInvalidParameter = paramErr
kPMNoDefaultPrinter = -30872
kPMNotImplemented = -30873
kPMNoSuchEntry = -30874
kPMInvalidPrintSettings = -30875
kPMInvalidPageFormat = -30876
kPMValueOutOfRange = -30877
kPMLockIgnored = -30878
kPMInvalidPrintSession = -30879
kPMInvalidPrinter = -30880
kPMObjectInUse = -30881
Data Types

Opaque Types

typedef struct OpaquePMPrintSession* PMPrintSession;
typedef struct OpaquePMPageFormat* PMPageFormat;
typedef struct OpaquePMPrintSettings* PMPrintSettings;
typedef struct OpaquePMPrintContext* PMPrintContext;
typedef struct OpaquePMDialog* PMDialog;

PMRect

struct PMRect

{
double top;
double left;
double right;
double bottom;

}

Carbon Printing Version 1.0

PMResolution

struct PMResolution

double hRes;
double vRes;

}
Functions

Managing Printing Objects

0SStatus PMRetain(PMObject object);
0SStatus PMRelease(PMObject object);

Print Loop

0SStatus PMCreateSession(PMPrintSession *printSession);

0SStatus PMSessionBeginDocument(PMPrintSession printSession,PMPrintSettings printSettings,
PMPageFormat pageFormat);

0SStatus PMSessionEndDocument(PMPrintSession printSession);

0SStatus PMSessionBeginPage(PMPrintSession printSession,PMPageFormat pageFormat,
const PMRect *pageFrame);

0SStatus PMSessionEndPage(PMPrintSession printSession);

0SStatus PMSessionGetGraphicsContext(PMPrintSession printSession,
CFStringRef graphicsContextType,void **graphicsContext);

Page Format and Print Settings Objects

0SStatus PMCreatePageFormat(PMPageFormat *pageFormat);
0SStatus PMCreatePrintSettings(PMPrintSettings *printSettings);
0SStatus PMSessionDefaultPageFormat(PMPrintSession printSession,PMPageFormat pageFormat);
0SStatus PMSessionDefaultPrintSettings(PMPrintSession printSession,
PMPrintSettings printSettings);
0SStatus PMSessionValidatePageFormat(PMPrintSession printSession,PMPageFormat pageFormat,
Boolean *result);
0SStatus PMSessionValidatePrintSettings(PMPrintSession printSession,
PMPrintSettings printSettings,Boolean *result);
0SStatus PMCopyPageFormat(PMPageFormat formatSrc,PMPageFormat formatDest);
0SStatus PMCopyPrintSettings(PMPrintSettings settingSrc,PMPrintSettings settingDest);
0SStatus PMFlattenPageFormat(PMPageFormat pageFormat,Handle *flatFormat);
0SStatus PMUnflattenPageFormat(Handle flatFormat,PMPageFormat *pageFormat);
0SStatus PMFlattenPrintSettings(PMPrintSettings printSettings,Handle *flatSetting);
0SStatus PMUnflattenPrintSettings(Handle flatSetting,PMPrintSettings *printSettings);

Displaying the Page Setup and Print Dialogs

0SStatus PMSessionPageSetupDialog(PMPrintSession printSession,PMPageFormat pageFormat,
Boolean *accepted);

0SStatus PMSessionPrintDialog(PMPrintSession printSession,PMPrintSettings printSettings,
PMPageFormat constPageFormat,Boolean* accepted);

0SStatus PMSessionUseSheets(PMPrintSession printSession,WindowRef documentWindow,
PMSheetDoneUPP sheetDoneProc);

Customising Page Setup and Print Dialogs

0SStatus PMSessionPageSetupDialogInit(PMPrintSession printSession,PMPageFormat pageFormat,
PMDialog *newDialog);

0SStatus PMSessionPrintDialogInit(PMPrintSession printSession,PMPrintSettings printSettings,
PMPageFormat constPageFormat,PMDialog *newDialog);

0SStatus PMSessionPageSetupDialogMain(PMPrintSession printSession,PMPageFormat pageFormat,
Boolean *accepted,PMPageSetupDialogInitUPP myInitProc);

0SStatus PMSessionPrintDialogMain(PMPrintSession printSession,PMPrintSettings printSettings,
PMPageFormat constPageFormat,Boolean *accepted,PMPrintDialogInitUPP myInitProc);

0SStatus PMSetModalFilterProc(PMDialog pmDialog,ModalFilterUPP filterProc);

0SStatus PMSetItemProc(PMDialog pmDialog,PMItemUPP itemProc);

0SStatus PMGetItemProc(PMDialog pmDialog,PMItemUPP *itemProc);

0SStatus PMGetDialogPtr (PMDialog pmDialog, DialogRef *theDialog);

Getting and Setting Page Setup Information

0SStatus PMGetAdjustedPaperRect(PMPageFormat pageFormat,PMRect *paperRect);
0SStatus PMGetAdjustedPageRect(PMPageFormat pageFormat,PMRect *pageRect);

Version 1.0 Carbon Printing

0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus

0SStatus

PMGetUnadjustedPaperRect(PMPageFormat pageFormat,PMRect *paperSize);
PMSetUnadjustedPaperRect(PMPageFormat pageFormat,const PMRect paperSize);
PMGetUnadjustedPageRect(PMPageFormat pageFormat,PMRect *pageSize);
PMGetResolution(PMPageFormat pageFormat,PMResolution *res);
PMSetResolution(PMPageFormat pageFormat,const PMResolution res);
PMSetOrientation(PMPageFormat pageFormat,PMOrientation orientation,Boolean lock);
PMGetOrientation(PMPageFormat pageFormat,PMOrientation *orientation);
PMGetScale(PMPageFormat pageFormat,double *scale);

PMSetScale(PMPageFormat pageFormat,double scale);
PMGetPageFormatExtendedData(PMPageFormat pageFormat,0SType dataID,UInt32 *size,
void *extendedData);

PMSetPageFormatExtendedData(PMPageFormat pageFormat,0SType datalD,UInt32 size,
void *extendedData);

Getting and Setting Printing Information

0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus
0SStatus

0SStatus

PMGetFirstPage(PMPrintSettings printSettings,UInt32 *first);
PMSetFirstPage(PMPrintSettings printSettings,UInt32 first,Boolean lock);
PMGetLastPage(PMPrintSettings printSettings,UInt32 *last);
PMSetLastPage(PMPrintSettings printSettings,UInt32 last,Boolean lock);
PMGetPageRange(PMPrintSettings printSettings,UInt32 *minPage,UInt32 *maxPage);
PMSetPageRange(PMPrintSettings printSettings,UInt32 minPage,UInt32 maxPage);
PMGetCopies(PMPrintSettings printSettings,UInt32 *copies);
PMSetCopies(PMPrintSettings printSettings,UInt32 copies,Boolean lock);
PMGetPrintSettingsExtendedData(PMPrintSettings printSettings,0SType datalD,
UInt32 *size,void *extendedData);
PMSetPrintSettingsExtendedData(PMPrintSettings printSettings,0SType datalD,
UInt32 size,void *extendedData);

Creating and Disposing of Universal Procedure Pointers

PMPageSetupDialogInitUPP NewPMPageSetupDialogInitUPP(PMPageSetupDialogInitProcPtr userRoutine);
PMPrintDialogInitUPP NewPMPrintDialogInitUPP(PMPrintDialogInitProcPtr userRoutine);

PMItemUPP
PMIdleUPP

NewPMItemUPP(PMItemProcPtr userRoutine);
NewPMIdleUPP(PMIdleProcPtr userRoutine);

PMSheetDoneUPP NewPMSheetDoneUPP(PMSheetDoneProcPtr userRoutine);

void
Void
void
void
void

0SStatus

DisposePMPageSetupDialogInitUPP(PMPageSetupDialogInitUPP userUPP);
DisposePMPrintDialogInitUPP(PMPrintDialogInitUPP userUPP);
DisposePMItemUPP(PMItemUPP userUPP);

DisposePMIdleUPP(PMIdleUPP userUPP);

DisposePMSheetDoneUPP(PMSheetDoneUPP userUPP);ErrOFS

PMSessionError(PMPrintSession printSession);

Application-Defined (Callback) Functions

void

myPMDialogSheetDoneFunction(PMPrintSession printSession, WindowRef documentWindow,
Boolean accepted);

Carbon Printing Version 1.0

Demonstration Program CarbonPrinting Listing

/7 KKk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok s ok s ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok ok ok ok ok ok

// CarbonPrinting.h CLASSIC EVENT MODEL

/7 KRRk ok skok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok s ok sk ok sk ok ok ok ok s ok ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok ok ok ok ok ok

//
// This program:

//

// e Demonstrates printing using the Carbon Printing Manager session functions.

//

// ® Opens two windows. The first window is a document window in which is displayed the

// document to be printed. The second window displays some printing-related information
// obtained from PMPageFormat and PMPrintSettings objects.

//

// o Customises the Pring dialog by adding a pop-up menu button, three radio buttons, a

// checkbox, and a group box.

//

// o Allows the user to print a document containing a picture and text, with the text

// being printed in the font and font size, and with the fractional widths setting,

// specified using the items added to the Print dialog.

//

// The customising of the Print dialog uses the AppendDITL method. Accordingly, on Mac 0S X,
// the dialogs are application-modal and are not displayed as window-modal sheet dialogs.

//

// The program utilises the following resources:

//

// o A 'plst' resource.

//

// ® 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).
//

// o Two 'WIND' resources (purgeable).

//

// o A 'TEXT' resource (purgeable) used for printing.

//

// e A 'PICT' resource (non-purgeable) used for printing.

//

// o 'CNTL' resources (purgeable) for controls added to the Print dialog box.
//

// o A 'DITL' resource (purgeable) specifying the items to be appended to the Print dialog
// box.

//

// ® A 'MENU' resource (preload, non-purgeable) for the pop-up menu button.

//

// o A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,

// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.

//

/KR ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok

// includes

#include <Carbon.h>

// defines
#define rMenubar 128
#define mAppleApplication 128
#define 1iAbout 1
#define mFile 129
#define 1iPageSetup 9
#define 1iPrint 10
#define 1iQuit 12
#define mFont 131
#define rDocWindow 128
#define rInfoWindow 129
#define rText 128
#define rPicture 128
#define rPrintDialogAppendDITL 128
#define 1iPopupButton 1

Version 1.0 Carbon Printing

#define 1iRadioButtonl@pt 2

#define 1iRadioButtonl2pt 3

#define 1iRadioButtonl4pt 4

#define 1iCheckboxFracWidths 5

#define kMargin 920

#define MAX_UINT32 OxFFFFFFFF

#define MIN(a,b) a) < () ? (@ : (b))

// typedefs
typedef struct
{

PMPrintSession printSession;

PMPageFormat pageFormat;

PMPrintSettings printSettings;

TEHandle editTextStrucHdl;

PicHandle pictureHdl;

} docStructure, *docStructurePtr, **docStructureHdl;

// function prototypes
void main (void);

void doPreliminaries (void);

OSErr quitAppEventHandler (AppleEvent * AppleEvent *,SInt32);
void doGetDocument (void);

void doEvents (EventRecord *);

void doUpdate (EventRecord *);

void doUpdateDocumentWindow (WindowRef);

void doMenuChoice (SInt32);

0SStatus doCreateOrValidatePageFormat (WindowRef);

0SStatus doPageSetUpDialog (WindowRef);

0SStatus doPrintSettingsDialog (WindowRef);

0SStatus doPrinting (WindowRef);

SIntl6 doCalcNumberOfPages (WindowRef,Rect);

void doDrawPage (WindowRef,Rect,SInt16,SInt16);
void doDrawPrintInfo (void);

void doDrawRectStrings (Str255,5Int16,SInt16,Str255,SInt16,SInt16,Str255);
void doErrorAlert (0SStatus);

void doConcatPStrings (Str255,5tr255);

void initialisationFunction (PMPrintSettings, PMDialog *);

void itemEvaluationFunction (DialogPtr,SIntl16);

Boolean eventFilter (DialogPtr,EventRecord *,SIntl6 *);

/7 KFE KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok ok ok sk ok sk ok sk ok ok ok ok

includes

global variables

// CarbonPrinting.c

// %k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 5k >k 3k 5k 3k 3k 3k 3k 3k 5k 5k >k %k 5k >k 3k 5k 3k 3k 3k 3k >k %k 5k >k %k 5k >k 3k 5k >k 3k 3k 3k >k %k 5k >k %k 5k >k 3k 3k >k 3k 3k 3k >k %k 5%k >k 3k 5%k >k 3k 3%k 3%k >k %k 3%k >k %k 5%k >k 3k 5%k %k 3k %k 5%k %k %k 5%k %k %k %k k k
//

#include "CarbonPrinting.h"

//

Boolean gRunningOnX = false;

WindowRef gDocumentWindowRef, gPrintInfoWindowRef;
SIntl6 gFontNumber;

SIntl6 gFontSize;

Boolean gDone;

PMItemUPP gNewItemEvaluateFunctionUPP;
ModalFilterUPP gEventFilterUPP;

PMPrintSettings gPrintSettings = kPMNoPrintSettings;
PMDialog gPMDialog;

UInt32 gFirstPage, glLastPage, gCopies;

Boolean gDrawPrintSettingsStuff;

/7 FF KKk ok skok ok ok ok ok sk ok sk ok skok ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok ko ko ok ok sk ok sk ok sk ok skokokokokokokok ok sk ok kR kk ok k ok k kR kR kb kk kR Xk aq

void mai

n(void)

Carbon Printing

Version 1.0

MenuBarHandle menubarHdl;

SInt32 response;

MenuRef menuRef;

docStructureHdl docStrucHdl;

SIntl6 fontNum;

RGBColor whiteColour = { OxFFFF, @OxFFFF, @OxFFFF };

RGBColor blueColour = { 0x4444, 0x4444, 0x9999 };

Rect portRect;

EventRecord eventStructure;

Boolean gotEvent;

// do prelimiaries
doPreliminaries(Q);

// set up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

ExitToShell();
SetMenuBar(menubarHdl);
DrawMenuBar();

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)
{
menuRef = GetMenuRef(mFile);
if(menuRef != NULL)
{
DeleteMenultem(menuRef,iQuit);
DeleteMenultem(menuRef,iQuit - 1);
3

gRunningOnX = true;

}

// open document window and attach document structure

if(!(gDocumentWindowRef = GetNewCWindow(rDocWindow,NULL,(WindowRef)-1)))
ExitToShell(Q);

SetPortWindowPort(gDocumentWindowRef);
GetFNum("\pGeneva" ,&fontNum);
TextFont(fontNum);

TextSize(10);

gFontNumber = fontNum;

gFontSize = 10;

if(!(docStrucHdl = (docStructureHdl) NewHandle(sizeof(docStructure))))
ExitToShell();
SetWRefCon(gDocumentWindowRef ,(SInt32) docStrucHdl);

(*docStrucHdl)->printSession = NULL;
(*docStrucHdl)->pageFormat kPMNoPageFormat ;
(*docStrucHdl)->printSettings = kPMNoPrintSettings;

// open printing information window

if(!(gPrintInfoWindowRef = GetNewCWindow(rInfoWindow,NULL,(WindowRef)-1)))
ExitToShell();

SetPortWindowPort(gPrintInfoWindowRef);
TextFont(fontNum);

TextSize(10);

RGBForeColor(&whiteColour);
RGBBackColor(&blueColour);
GetWindowPortBounds(gPrintInfoWindowRef ,&portRect);
EraseRect(&portRect);

Version 1.0 Carbon Printing

3
/

\Y

{

}

/

{

3
/

\Y

{

// load and display simulated document

doGetDocument();

// event loop
gbhone = false;
while(!gDone)

gotEvent = WaitNextEvent(everyEvent,&eventStructure,MAX_UINT32,NULL);

if(gotEvent)

doEvents(&eventStructure);

}

/oo ko skok ok ok sk ok sk ok sk ok skok ok ok sk ok sk ok ko ko okokokokokok ok skok ko skokokok ok kb kR kR ok k ko kokk kR kb kkxkxk k% doPpreliminaries

oid doPreliminaries(void)
OSErr osError;

MoreMasterPointers(128);
InitCursor();
FlushEvents(everyEvent,0);

osError = AEInstallEventHandler(kCoreEvent(Class,kAEQuitApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
oL, false);
ifCosError != noErr)
ExitToShell();

/KR ok ok sk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok skeok sk ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok sk ok sk ok ko dOQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
OSErr osError;

DescType returnedType;

Size actualSize;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,Q,

&actualSize);
if(osError == errAEDescNotFound)
{
gDone = true;
osError = nokErr;
}
else if(osError == nokrr)

osError = errAEParamMissed;

return osError;

/KR ok ko skok ok ok sk ok sk ok sk ok skok ok ok sk ok sk ok ko ko ok okok sk ok sk ok ko ko skokokok ok sk ok kR skokkk ko k kR kR kR kR kkk ok k k% oGetDocument

oid doGetDocument(void)

docStructureHdl docStrucHdl;

Rect portRect, destRect, viewRect;

Handle textHdl;

SetPortWindowPort(gDocumentWindowRef);

docStrucHdl = (docStructureHdl) GetWRefCon(gDocumentWindowRef);

GetWindowPortBounds(gDocumentWindowRef ,&portRect);

Carbon Printing Version 1.0

}

destRect = portRect;

InsetRect(&destRect,4,4);

destRect.bottom +=4;

viewRect = destRect;

(*docStrucHdl)->editTextStrucHdl = TENew(&destRect,&viewRect);

textHdl = GetResource('TEXT',rText);
if(textHdl == NULL)
ExitToShell();

HLock(textHdl);
TEInsert(*textHdl,GetHandleSize(textHdl), (*docStrucHdl)->editTextStrucHdl);
HUnlock(textHdl);
ReleaseResource(textHdl);
(*docStrucHdl)->pictureHdl = GetPicture(rPicture);
if((*docStrucHdl)->pictureHdl == NULL)

ExitToShell();

InvalWindowRect(gDocumentWindowRef ,&portRect);

/7 FFFRE KKk ok ko ok ok ok ook sk ok sk ok skok ok ok ok ok sk ok ko ko sk ok kok sk ok ko ko skokokokokok ok kb sk ok skokkokokok ok kb kR kb ok k ok kk kR kR kk k% oFEyvents

void doEvents(EventRecord *eventStrucPtr)

{

}

WindowRef windowRef;
WindowPartCode partCode;

windowRef = (WindowRef) eventStrucPtr->message;

switch(eventStrucPtr->what)
{
case kHighLevelEvent:
AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
partCode = FindWindow(eventStrucPtr->where,&windowRef);
switch(partCode)
{
case inMenuBar:
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
if(windowRef != FrontWindow())
SelectWindow(windowRef);
break;

case inDrag:
DragWindow(windowRef,eventStrucPtr->where,NULL);
break;

}

break;

case keyDown:
if((eventStrucPtr->modifiers & cmdKey) != 0)
doMenuChoice(MenuEvent(eventStrucPtr));
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

}

/7 KF KKKk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok skok sk ok ok ok sk ok sk ok sk ok ok ok ok dOUpdate

Version 1.0

Carbon Printing

void doUpdate(EventRecord *eventStrucPtr)
{

WindowRef windowRef;
GrafPtr oldPort;
Rect portRect;

windowRef = (WindowRef) eventStrucPtr->message;
GetPort(&oldPort);
BeginUpdate(windowRef);

if(windowRef == gDocumentWindowRef)
doUpdateDocumentWindow(windowRef);

else if(windowRef == gPrintInfoWindowRef)

{
SetPortWindowPort(gPrintInfoWindowRef);
GetWindowPortBounds(gPrintInfoWindowRef ,&portRect);
EraseRect(&portRect);
doDrawPrintInfo();

}

EndUpdate(windowRef);

SetPort(oldPort);
}

/7 KF KKk ok skok ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok skok sk ok sk ok sk ok sk ok ko ok ok ok ok dOUpdateDOCumentWindOW

void doUpdateDocumentWindow(WindowRef windowRef)

{
Rect portRect, pictureRect, savedDestRect;
docStructureHdl docStrucHdl;
SIntl6 savedFontNum, savedFontSize, savedlLineHeight, fontNum;

SetPortWindowPort(windowRef);
GetWindowPortBounds(gDocumentWindowRef ,&portRect);
docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);

savedDestRect = (*(*docStrucHdl)->editTextStrucHdl)->destRect;
savedFontNum = (*(*docStrucHdl)->editTextStrucHdl)->txFont;
savedFontSize = (*(*docStrucHdl)->editTextStrucHdl)->txSize;
savedLineHeight = (*(*docStrucHdl)->editTextStrucHdl)->1ineHeight;

(*(*docStrucHdl)->editTextStrucHdl)->destRect = portRect;
InsetRect(&(*(*docStrucHdl)->editTextStrucHdl)->destRect,4,4);
(*(*docStrucHdl)->editTextStrucHdl)->destRect.bottom += 4;
GetFNum("\pGeneva" ,&fontNum);
(*(*docStrucHdl)->editTextStrucHdl)->txFont = fontNum;
(*(*docStrucHdl)->editTextStrucHdl)->txSize = 10;
(*(*docStrucHdl)->editTextStrucHdl)->1lineHeight = 13;
TECalText((*docStrucHdl)->editTextStrucHdl);
TEUpdate(&portRect, (*docStrucHdl)->editTextStrucHdl);

(*(*docStrucHdl)->editTextStrucHdl)->destRect = savedDestRect;
(*(*docStrucHdl)->editTextStrucHdl)->txFont = savedFontNum;
(*(*docStrucHdl)->editTextStrucHdl)->txFont = savedFontSize;
(*(*docStrucHdl)->editTextStrucHdl)->1lineHeight = savedlLineHeight;

SetRect(&pictureRect,2,2,180,134);
DrawPicture((*docStrucHdl)->pictureHdl,&pictureRect);
}

/7 FEFEE Rk ok sk ok ok ok ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko ko ok kok sk ok osk ok skok ko okokokokokk ok sk ok kb sk k ok ok ok kb kR kR kb ok kxR k k k% JoMenuCholce

void doMenuChoice(SInt32 menuChoice)

{

MenuID menulD;

Carbon Printing Version 1.0

}

MenuItemIndex menultem;
0SStatus osStatus;
Rect portRect;

menuID = HiWord(menuChoice);
menultem = LoWord(menuChoice);

if(menulD == @)
return;

switch(menulD)
{
case mAppleApplication:
if(menultem == iAbout)
SysBeep(10);
break;

case mFile:
if(menultem == iPageSetup)
{
osStatus = doPageSetUpDialog(gDocumentWindowRef);
if(osStatus != kPMNoError)
doErrorAlert(osStatus);
}

if(menultem == iPrint)
{
osStatus = doPrintSettingsDialog(gDocumentWindowRef);
if(osStatus == kPMNoError)
{
osStatus = doPrinting(gDocumentWindowRef);
if(osStatus != kPMNoError)
doErrorAlert(osStatus);
}
else if(osStatus !'= kPMCancel)
doErrorAlert(osStatus);
}

GetWindowPortBounds(gPrintInfoWindowRef ,&portRect);
InvalWindowRect(gPrintInfoWindowRef,&portRect);

if(menultem == iQuit)
gDone = true;

break;

}

HiliteMenu(@);

/7 KF KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko sk ok ok ok ok sk ok sk ok docreateorvalidatepageFor-mat

0SStatus doCreateOrValidatePageFormat (WindowRef windowRef)

{

docStructureHdl docStrucHdl;

0SStatus osStatus = kPMNoError;
PMPrintSession printSession = NULL;
PMPageFormat pageFormat = kPMNoPageFormat;

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);
HLock((Handle) docStrucHdl);

// create printing session

osStatus = PMCreateSession(&printSession);

if necessary, create and store page format object, otherwise validate existing

if(osStatus == noErr)

Version 1.0 Carbon Printing

{
if((*docStrucHdl)->pageFormat == kPMNoPageFormat)

{
osStatus = PMCreatePageFormat(&pageFormat);

if((osStatus == kPMNoError) && (pageFormat != kPMNoPageFormat))
{

osStatus = PMSessionDefaultPageFormat(printSession,pageFormat);

if(osStatus == kPMNoError)
(*docStrucHdl)->pageFormat = pageFormat;
}

else

{
if(osStatus == kPMNoError)
osStatus = kPMGeneralError;

}
}
else
{
osStatus = PMSessionValidatePageFormat(printSession,(*docStrucHdl)->pageFormat,
kPMDontWantBoolean);
}
}
// store printing session, or clean up if error

if(osStatus == kPMNoError)
(*docStrucHdl)->printSession = printSession;
else

{
if(pageFormat !'= kPMNoPageFormat)
PMRelease(pageFormat);
if(printSession != NULL)
PMRelease(printSession);

}
HUnlock((Handle) docStrucHdl);

return osStatus;

}

/7 FFFRE KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok o ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok sk ok sk ok sk ok ko sk ok ok ok ok sk ok ok ok dopagesetUpDialog

0SStatus doPageSetUpDialog(WindowRef windowRef)

{
0SStatus osStatus = kPMNoError;
docStructureHdl docStrucHdl;
Boolean userClickedOKButton;

osStatus = doCreateOrValidatePageFormat (windowRef);
if(osStatus != kPMNoError)
return osStatus;

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);
HLock((Handle) docStrucHdl);

osStatus = PMSessionPageSetupDialog((*docStrucHdl)->printSession, (*docStrucHdl)->pageFormat,
&userClickedOKButton);

if((*docStrucHdl)->printSession != NULL)

{
PMRelease((*docStrucHdl)->printSession);
(*docStrucHdl)->printSession = NULL;

}

HUnlock((Handle) docStrucHdl);
gDrawPrintSettingsStuff = false;

Carbon Printing Version 1.0

return osStatus;

}

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok ok doprintsettingsDialog

0SStatus doPrintSettingsDialog(WindowRef windowRef)

{
0SStatus osStatus = kPMNoError;
docStructureHdl docStrucHdl;
PMPrintSettings printSettings = kPMNoPrintSettings;
CFStringRef stringRef;
PMPrintDialogInitUPP initialisationFunctionUPP;
Boolean userClickedPrintButton;

osStatus = doCreateOrValidatePageFormat (windowRef);
if(osStatus != kPMNoError)
return osStatus;

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);
HLock((Handle) docStrucHdl);

osStatus = PMCreatePrintSettings(&printSettings);
if((osStatus == kPMNoError) && (printSettings != kPMNoPrintSettings))
{
osStatus = CopyWindowTitleAsCFString(windowRef,&stringRef);
if(osStatus == noErr)
{
osStatus = PMSetJobNameCFString(printSettings,stringRef);
CFRelease(stringRef);
}

if(osStatus == noErr)
osStatus = PMSessionDefaultPrintSettings((*docStrucHdl)->printSession,printSettings);

if(osStatus == kPMNoError)

(*docStrucHdl)->printSettings = printSettings;
printSettings = kPMNoPrintSettings;
3
}

if(osStatus == kPMNoError)
{
if(gRunningOnX)
{
PMSetPageRange((*docStrucHdl)->printSettings,1,kPMPrintAl1lPages);
PMSetFirstPage((*docStrucHdl)->printSettings,1,false);
PMSetLastPage((*docStrucHdl)->printSettings,9999, false);
}
}

if(osStatus == kPMNoError)
{
initialisationFunctionUPP = NewPMPrintDialogInitUPP((PMPrintDialogInitProcPtr)
initialisationFunction);
gNewItemEvaluateFunctionUPP = NewPMItemUPP((PMItemProcPtr) itemEvaluationFunction);
gEventFilterUPP NewModalFilterUPP((ModalFilterProcPtr) eventFilter);

osStatus = PMSessionPrintDialogInit((*docStrucHdl)->printSession,
(*docStrucHdl)->printSettings,
(*docStrucHdl)->pageFormat ,&gPMDialog);
if(osStatus == kPMNoError)
osStatus = PMSessionPrintDialogMain((*docStrucHdl)->printSession,
(*docStrucHdl)->printSettings,
(*docStrucHdl)->pageFormat,
&userClickedPrintButton,initialisationFunctionUPP);

if(osStatus == kPMNoError && !userClickedPrintButton)
osStatus = kPMCancel;

Version 1.0 Carbon Printing

}

DisposePMPrintDialogInitUPP(initialisationFunctionUPP);
DisposePMItemUPP(gNewItemEvaluateFunctionUPP);
DisposeModalFilterUPP(gEventFilterUPP);

b

if(CosStatus !'= kPMNoError || osStatus == kPMCancel)

{
if((*docStrucHdl)->printSettings != kPMNoPrintSettings)
{

PMRelease((*docStrucHdl)->printSettings);
(*docStrucHdl)->printSettings = kPMNoPrintSettings;

}
if((*docStrucHdl)->printSession != NULL)
{
PMRelease((*docStrucHdl)->printSession);
(*docStrucHdl)->printSession = NULL;
}
}

HUnlock((Handle) docStrucHdl);
gDrawPrintSettingsStuff = userClickedPrintButton;

return osStatus;

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok sk ok ok ok ok dopr-inting

0SStatus doPrinting(WindowRef windowRef)

{

docStructureHdl docStrucHdl;

0SStatus osStatus = kPMNoError;

UInt32 firstPage, lastPage, numberOfPages;
PMRect adjustedPageRect;

Rect pageRect;

SIntle page;

GrafPtr oldPort, currentPort, printingPort;
GetPort(&oldPort);

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);
HLock((Handle) docStrucHdl);

// get first and last page to print as set by user in Print dialog

osStatus = PMGetFirstPage((*docStrucHdl)->printSettings,&firstPage);

if(osStatus == kPMNoError)
osStatus = PMGetLastPage((*docStrucHdl)->printSettings,&lastPage);

// for demo purposes, store first, last page and copies for Some Printing Information window
gFirstPage = firstPage;

gLastPage = lastPage;

PMGetCopies((*docStrucHdl)->printSettings,&gCopies);

Y /A get actual number of pages in document and, if necessary, adjust last page

if(osStatus == kPMNoError)
osStatus = PMGetAdjustedPageRect((*docStrucHdl)->pageFormat,&adjustedPageRect);

if(osStatus == kPMNoError)
{

pageRect.top = adjustedPageRect.top;
pageRect.left adjustedPageRect.left;
pageRect.bottom = adjustedPageRect.bottom;
pageRect.right adjustedPageRect.right;

numberOfPages = doCalcNumberOfPages(windowRef,pageRect);

Carbon Printing Version 1.0

if(numberOfPages < lastPage)
lastPage = numberOfPages;

}

// for Mac 0S X, set first and last page for progress dialog
if(gRunningOnX)

if(osStatus == kPMNoError)
osStatus = PMSetFirstPage((*docStrucHdl)->printSettings,firstPage,false);

if(osStatus == kPMNoError)
osStatus = PMSetLastPage((*docStrucHdl)->printSettings,lastPage,false);
}

// printing loop

if(osStatus == kPMNoError)
{
osStatus = PMSessionBeginDocument((*docStrucHdl)->printSession,
(*docStrucHdl)->printSettings,
(*docStrucHdl)->pageFormat);
if(osStatus == kPMNoError)

{
page = 1;
while((page <= lastPage) && (osStatus == kPMNoError) &&
(PMSessionError((*docStrucHdl)->printSession) == kPMNoError))
{
osStatus = PMSessionBeginPage((*docStrucHdl)->printSession,
(*docStrucHdl)->pageFormat ,NULL);
if(osStatus != kPMNoError)
break;
GetPort(¤tPort);
osStatus = PMSessionGetGraphicsContext((*docStrucHdl)->printSession,
kPMGraphicsContextQuickdraw,
(void **) &printingPort);
if(osStatus == kPMNoError)
{
SetPort(printingPort);
doDrawPage(windowRef ,pageRect,page,number0fPages);
SetPort(currentPort);
}
osStatus = PMSessionEndPage((*docStrucHdl)->printSession);
if(osStatus != kPMNoError)
break;
page++;
}
}
PMSessionEndDocument((*docStrucHdl)->printSession);
}
// clean up

if((*docStrucHdl)->printSettings != kPMNoPrintSettings)
{
PMRelease((*docStrucHdl)->printSettings);
(*docStrucHdl)->printSettings = kPMNoPrintSettings;

}

if((*docStrucHdl)->printSession != NULL)

{
PMRelease((*docStrucHdl)->printSession);
(*docStrucHdl)->printSession = NULL;

}

Version 1.0 Carbon Printing

HUnlock((Handle) docStrucHdl);
SetPort(oldPort);

return osStatus;

}

/7 KF KKKk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok ok docalcNumberOfpages

SIntl6 doCalcNumberOfPages(WindowRef windowRef,Rect pageRect)

{
docStructureHdl docStrucHdl;
FontInfo fontInfo;
Rect destRect;
SIntl6 heightDestRect, linesPerPage, numberOfPages;

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);

TextFont(gFontNumber);
TextSize(gFontSize);
GetFontInfo(&fontInfo);

(*(*docStrucHdl)->editTextStrucHdl)->txFont = gFontNumber;

(*(*docStrucHdl)->editTextStrucHdl)->txSize = gFontSize;

(*(*docStrucHdl)->editTextStrucHdl)->1ineHeight = fontInfo.ascent + fontInfo.descent
+ fontInfo.leading;

SetRect(&destRect,pageRect.left + kMargin,pageRect.top + (kMargin * 1.5),
pageRect.right - kMargin,pageRect.bottom - (kMargin * 1.5));

(*(*docStrucHdl)->editTextStrucHdl)->destRect = destRect;
TECalText((*docStrucHdl)->editTextStrucHdl);

heightDestRect = destRect.bottom - destRect.top;

linesPerPage = heightDestRect / (*(*docStrucHdl)->editTextStrucHdl)->1lineHeight;
numberOfPages = ((*(*docStrucHdl)->editTextStrucHdl)->nlLines / linesPerPage) + 1;

return(numberOfPages);

}

/7 FF KKKk ok skok ok ok ok ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok s ok sk ok sk ok sk ok ok ok ok dODPOWPage

void doDrawPage(WindowRef windowRef,Rect pageRect,SIntl6 pageNumber,SIntle numberOfpages)

{
docStructureHdl docStrucHdl;
TEHandle docEditTextStrucHdl, pageEditTextStrucHdl;
PicHandle pictureHdl;
Rect destRect, pictureRect;
SIntl6 heightDestRect, linesPerPage, numberOfLines;
Handle textHdl;
SInt32 startOffset, endOffset;
Str255 theString;

TextFont(gFontNumber);
TextSize(gFontSize);

docStrucHdl = (docStructureHdl) GetWRefCon(windowRef);
docEditTextStrucHdl = (*docStrucHdl)->editTextStrucHdl;
pictureHdl = (*docStrucHdl)->pictureHdl;

destRect = (*docEditTextStrucHdl)->destRect;

heightDestRect = destRect.bottom - destRect.top;

linesPerPage = heightDestRect / (*docEditTextStrucHdl)->lineHeight;
numberOfLines = (*docEditTextStrucHdl)->nlLines;

startOffset = (*docEditTextStrucHdl)->1lineStarts[(pageNumber - 1) * linesPerPage];
if(pageNumber == numberOfpages)
endOffset = (*docEditTextStrucHdl)->1lineStarts[numberOfLines];

Carbon Printing Version 1.0

else
endOffset = (*docEditTextStrucHdl)->1lineStarts[pageNumber * linesPerPage];

pageEditTextStrucHdl = TENew(&destRect,&destRect);

textHdl = (*docEditTextStrucHdl)->hText;

HLock(textHdl);

TEInsert(*textHdl + startOffset,endOffset - startOffset,pageEditTextStrucHdl);
TEDispose(pageEditTextStrucHdl);

if(pageNumber == 1)

SetRect(&pictureRect,destRect.left,destRect.top,
destRect.left + ((*pictureHdl)->picFrame.right - (*pictureHdl)->picFrame.left),
destRect.top + ((*pictureHdl)->picFrame.bottom - (*pictureHdl)->picFrame.top));
DrawPicture(pictureHdl,&pictureRect);
}

MoveTo(destRect.left,pageRect.bottom - 25);
NumToString((SInt32) pageNumber,theString);
DrawString(theString);

3

/7 FFFRE KKk ko ok ok ok ok sk ok sk ok skok ko ok ok ok sk ok sk ok skok ko okok ok ok ok sk ok kb kb skokokok ok sk ok sk ok kokkk ko ko k kR kkkkkkx k% doDpagwPrintInfo

void doDrawPrintInfo(void)

{
docStructureHdl docStrucHdl;
0SStatus osStatus = kPMNoError;
PMRect theRect;
Str255 s2, s3;
PMResolution resolution;
double scale;

PMOrientation orientation;

docStrucHdl = (docStructureHdl) GetWRefCon(gDocumentWindowRef);
if((*docStrucHdl)->pageFormat == kPMNoPageFormat)
return;

HLock((Handle) docStrucHdl);

MoveTo(20,25);

TextFace(bold);

DrawString("\pFrom PMPageFormat Object:");
TextFace(normal);

PMGetAdjustedPaperRect((*docStrucHdl)->pageFormat,&theRect);
NumToString((SInt32) theRect.top,s2);

NumToString((SInt32) theRect.left,s3);

doDrawRectStrings("\pPaper Rectangle (top,left):",20,45,s2,190,45,s3);
NumToString((SInt32) theRect.bottom,s2);

NumToString((SInt32) theRect.right,s3);

doDrawRectStrings("\pPaper Rectangle (bottom,right):",20,60,s2,190,60,s3);

PMGetAdjustedPageRect((*docStrucHdl)->pageFormat,&theRect);
NumToString((SInt32) theRect.top,s2);

NumToString((SInt32) theRect.left,s3);

doDrawRectStrings("\pPage Rectangle (top,left):",20,75,s2,190,75,s3);
NumToString((SInt32) theRect.bottom,s2);

NumToString((SInt32) theRect.right,s3);

doDrawRectStrings("\pPage Rectangle (bottom,right):",20,90,s2,190,90,s3);

PMGetResolution((*docStrucHdl)->pageFormat,&resolution);
MoveTo(20,105);

DrawString("\pDrawing Resolution (Vertical):");
NumToString((SInt32) resolution.vRes,s2);
MoveTo(190,105);

DrawString(s2);

DrawString("\p dpi");

MoveTo(20,120);

Version 1.0 Carbon Printing

DrawString("\pDrawing Resolution (Horizontal):");
NumToString((SInt32) resolution.hRes,s2);
MoveTo(190,120);

DrawString(s2);

DrawString("\p dpi");

PMGetScale((*docStrucHdl)->pageFormat,&scale);
MoveTo(20,135);

DrawString("\pScale:");

NumToString((SInt32) scale,s2);
MoveTo(190,135);

DrawString(s2);

DrawString("\p%");

PMGetOrientation((*docStrucHdl)->pageFormat,&orientation);

MoveTo(20,150);

DrawString("\pPage Orientation:");

MoveTo(190,150);

if(orientation == kPMPortrait)
DrawString("\pPortrait");

else if(orientation == kPMLandscape)
DrawString("\pLandscape");

if(gDrawPrintSettingsStuff)
{
MoveTo(20,170);
TextFace(bold);
DrawString("\pFrom PMPrintSettings Object:");
TextFace(normal);

MoveTo(20,190);

DrawString("\pFirst Page:");
NumToString((SInt32) gFirstPage,s2);
MoveTo(190,190);

DrawString(s2);

MoveTo(20,205);

DrawString("\pLast Page:");
NumToString((SInt32) glLastPage,s2);
MoveTo(190,205);

DrawString(s2);

MoveTo(20,220);
DrawString("\pNumber of Copies:");
NumToString((SInt32) gCopies,s2);
MoveTo(190,220);
DrawString(s2);

3

HUnlock((Handle) docStrucHdl);
}

/7 FFFRE KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok skok sk ok ok s ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok ok ok sk ok ok ok dODPaWReCtStPingS

void doDrawRectStrings(Str255 s1,SInt16 x1,SIntl6 yl1,Str255 s2,SIntl6 x2,SIntl6 y2,Str255 s3)

{
MoveTo(x1,yl);
DrawString(sl);
MoveTo(x2,y2);
DrawString("\p(");
DrawString(s2);
DrawString("\p,");
DrawString(s3);
DrawString("\p)");

3

/7 FEFE Rk ok ko ok ok ok sk ok sk ok skok ko ok ok ok sk ok sk ok ko skokokokok ok ok ok ok kR skokkokokok ok sk ok sk ok kokkk ok k ko k kR kR kb kkxkxkk k% doEprrorAlert

void doErrorAlert(0SStatus errorType)

Carbon Printing Version 1.0

n

Str255 theString, errorString = "\pCarbon Printing Manager Error ";
SIntl6o itemHit;

NumToString((SInt32) errorType,theString);
doConcatPStrings(errorString,theString);

StandardAlert(kAlertCautionAlert,errorString,NULL,NULL ,&itemHit);
3

/7 KF KKKk ok skok sk ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok skeok ok ok ok ok sk ok sk ok skeok sk ok ok sk ok sk ok sk ok ko ok ok ok ok ok ok doconcatpStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)

{
SIntl6é appendLength;

appendLength = MINCappendString[@],255 - targetString[@]);
if(appendLength > @)

BlockMoveData(appendString+1,targetString+targetString[@]+1,(SInt32) appendLength);
targetString[@] += appendLength;
}
}

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ke ok ok

// PrintDialogAppend.c

/7 KRRk sk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok sk ok s ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok

// includes

#include "CarbonPrinting.h"

// global variables

SInt32 gFirstAppendedItemNo;
PMItemUPP gOldItemEvaluateFunctionUPP;

extern PMDialog gPMDialog;

extern PMItemUPP gNewItemEvaluateFunctionUPP;
extern ModalFilterUPP gEventFilterUPP;

extern SIntl6 gFontNumber;

extern SIntl6 gFontSize;

/7 FFFE Rk ko ok ok ok ok sk ok sk ok ko ko ok ok sk ok sk ok skok skokokokokok ok sk ok sk ok ok ok k ok k ok kb kR kkkkkkxkkkkk k% {nitiglisationFunction

void initialisationFunction(PMPrintSettings printSettings,PMDialog *pmDialog)
{

0SStatus osStatus = kPMNoError;

DialogRef dialogRef;

Handle ditlHd1;

SIntl6 numberOfExistingItems, numberOfMenultems;

MenuRef menuRef;

ControlRef controlRef;

Str255 itemName;

*pmDialog = gPMDialog;
osStatus = PMGetDialogPtr(*pmDialog,&dialogRef);
if(osStatus == kPMNoError)

{
// append DITL

ditlHdl = GetResource('DITL',rPrintDialogAppendDITL);
numberOfExistingItems = CountDITL(dialogRef);
AppendDITL(dialogRef,ditlHdl,appendDITLBottom);
gFirstAppendedItemNo = numberOfExistingIltems + 1;

Version 1.0 Carbon Printing

}

Y /A create font menu and attach to popup button, set current font to first item

menuRef = NewMenu(mFont,NULL);

CreateStandardFontMenu(menuRef,0,0,0,NULL);

GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo,&controlRef);

SetControlMinimum(controlRef,1);

numberOfMenultems = CountMenuItems(menuRef);

SetControlMaximum(controlRef,numberOfMenultems);

SetControlData(controlRef,kControlEntireControl,kControlPopupButtonMenuRefTag,
sizeof(menuRef),&menuRef);

GetMenuItemText(menuRef,1,itemName);

GetFNum(itemName,&gFontNumber);

// set second radio button to on state and set current font size

GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 2,&controlRef);
SetControlValue(controlRef,1);
gFontSize = 12;

// switch fractional widths off

GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 4,&controlRef);
SetControlValue(controlRef,0);
SetFractEnable(false);

}

if(osStatus == kPMNoError)

osStatus = PMGetItemProc(*pmDialog,&g0ldItemEvaluateFunctionUPP);
if(osStatus == kPMNoError)

osStatus = PMSetItemProc(*pmDialog,gNewItemEvaluateFunctionUPP);

if(osStatus == kPMNoError)
PMSetModalFilterProc(*pmDialog,gEventFilterUPP);

if(osStatus != kPMNoError)
doErrorAlert(osStatus);

/7 FFFRE KKk ko ok ok ok ok sk ok sk ok ko sk ok okok ok sk ok skok skokokokokok ok sk ok sk ok kok ok k ok k ok kb kR kR kb ok ok xkkkkk k% | temEvaluationFunction

void itemEvaluationFunction(DialogRef dialogRef,SIntl6 itemHit)

{

SIntle localizedItemNo, controlValue;
ControlRef controlRef;

MenuRef menuRef;

Str255 itemName;

localizedItemNo = itemHit - gFirstAppendedItemNo + 1;
if(localizedItemNo > @)

if(localizedItemNo == iPopupButton)

{
GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo,&controlRef);
controlValue = GetControlValue(controlRef);
GetControlData(controlRef,kControlEntireControl,kControlPopupButtonMenuHandleTag,

sizeof(menuRef),(Ptr) &menuRef,NULL);

GetMenuItemText(menuRef,controlValue,itemName);
GetFNum(itemName,&gFontNumber);

else if(localizedItemNo >= iRadioButtonl@pt && localizedItemNo <= iRadioButtonl4pt)

{
GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 1,&controlRef);
SetControlValue(controlRef,0);
GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 2,&controlRef);
SetControlValue(controlRef,0);
GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 3,&controlRef);
SetControlValue(controlRef,0);

Carbon Printing Version 1.0

GetDialogItemAsControl(dialogRef,itemHit,&controlRef);
SetControlValue(controlRef,1);

if(localizedItemNo == iRadioButtonl@pt)
gFontSize = 10;
else if(localizedItemNo == iRadioButtonl12pt)
gFontSize = 12;
else if(localizedItemNo == iRadioButtonl4pt)
gFontSize = 14;
}
else if(localizedItemNo == iCheckboxFracWidths)
{
GetDialogItemAsControl(dialogRef,gFirstAppendedItemNo + 4,&controlRef);
SetControlValue(controlRef, !GetControlValue(controlRef));
SetFractEnable(GetControlValue(controlRef));
}
}
else
{
InvokePMItemUPP(dialogRef,itemHit,g0ldItemEvaluateFunctionUPP);
}
}

/7 FFFRE Rk ok ko ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko skokokok ok sk ok sk ok skok ko okokokok ok sk ok sk ok kok sk k ok k ok kb kR kR kb kkkkk kk k* aventFilter

Boolean eventFilter(DialogRef dialogRef,EventRecord *eventStrucPtr,SIntl6 *itemHit)
{

Boolean handledEvent;

GrafPtr oldPort;

handledEvent = false;

if((eventStrucPtr->what == updateEvt) &&
((WindowRef) eventStrucPtr->message != GetDialogWindow(dialogRef)))
{
doUpdate(eventStrucPtr);

}

else

{
GetPort(&oldPort);
SetPortDialogPort(dialogRef);

handledEvent = StdFilterProc(dialogRef,eventStrucPtr,itemHit);

SetPort(oldPort);
}

return handledEvent;

}

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok s ok sk ok sk ok sk ok ok s ok s ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok ok

Version 1.0 Carbon Printing

Demonstration Program CarbonPrinting Comments

When the program is run, the user should:

e Choose Page Setup.. from the File menu, make changes in the Page Setup dialog, and observe the
information, extracted from the PMPageFormat object, drawn in the window titled Some Printing
Information.

e Choose Print.. from the File menu, note the items added to the Print dialog, select the desired font,
font size, and fractional widths setting using these items, and print the document.

The user should print the document several times using different page size, scaling, and orientation
settings in the Page Setup dialog (noting the changed information in the Printing Settings window), and
occasionally limiting the number of changes printed by changing the start-page and end-page settings in
the Print dialog.

The window in which the "document" is displayed is titled Simulated Document because, in this
demonstration, the document is not loaded from a file. Rather, a document is simulated using text from a
'TEXT' resource and a picture from a 'PICT' resource. This approach is used in order to keep that part of
the source code not related to printing per se to a minimum. For the same reason, the (flattened)
PMPageFormat object is not saved to the resource fork of a document file in this demonstration. (The
demonstration program at Chapter 19 shows how to do this.)

Printing.h

defines

Constants are established for the resource IDs of a 'PICT' and 'TEXT' resources used for the printing
demonstration, and for the 'DITL' resource containing the items to be appended to the Print dialog. Five
constants are established for the item numbers of the items in the 'DITL' resource. kMargin is used to
set the margins for the printed page.

typedefs

A handle to a structure of type docStructure will be stored in the Window object for the Simulated
Document window. The fields of this structure will be assigned PMPrintSession, PMPageFormat, and
PMPrintSettings objects, together with handles to the 'TEXT' and 'PICT' resources referred to above.

CarbonPrinting.c

Global Variables

gFontNumber will be assigned the current font number. gFontSize will be assigned the current font size.
Both of these values can be changed by the user via the items added to the Print dialog.

gNewItemEvaluateFunctionUPP and gEventFilterUPP will be assigned a universal procedure pointer to,
respectively, the item evaluation function and event filter function for the customised Print dialog.
gPMDialog will be assigned a pointer to a PMDialog object for the customised Print dialog.

The last four variables are incidental to the demonstration, and will be used to store information to be
displayed in the second window (titled Some Printing Information) created by the program.

main

After the Simulated Document window is created, its font is set to Geneva 10 point and the global
variables gFontNumber and gFontSize are set to reflect this. A document structure is then created and

associated with the window. The three fields of the document structure which will be assigned Carbon
Printing Manager objects are then initialised.

The Some Printing Information window is then created.
The call to doGetDocument displays the simulated document in the Simulated Document window.

Note that, in this program, error handling of all errors other than Carbon Printing Manager errors is
somewhat rudimentary. The program simply exits.
doGetDocument

doGetDocument creates a monostyled TextEdit structure, assigns the handle to this structure to the
relevant field of the Simulated Document window's document structure, loads a 'TEXT' resource, and inserts

Carbon Printing Version 1.0

it into a TextEdit structure. (The act of insertion causes the text to be drawn on the screen.) A 'PICT'
resource is then loaded and its handle assigned to the relevant field of the Simulated Document window’s
document structure. The call to InvalWindowRect invalidates the content region, generating an update
event which, as will be seen, causes the picture to be drawn in the window.

TextEdit is not addressed until Chapter 21; however, to facilitate an understanding of the TextEdit
aspects of this program, it is sufficient at this stage to understand that a monostyled TextEdit structure
contains, amongst others, the following fields:

destRect The destination rectangle into which text is drawn. The bottom of the
destination rectangle can extend to accommodate the end of the text. In other
words, you can think of the destination rectangle as bottomless.

viewRect The rectangle within which text is actually displayed.

hText A handle to the actual text.
txFont The font number of the font to be used,
txSize The size of the font in points.

lineHeight The vertical spacing, in pixels, of the lines of text.
nLines The total number of lines of text.

lineStarts An array with a number of elements corresponding to the number of lines of text.
Each element contains the offset of the first character in each line.

Note that the destination and view rectangles were passed in the call to TENew, these rectangles having
been defined in the preceding five lines of code.

doUpdateDocumentWindow

As will be seen, two of the functions directly related to printing operations will change the values in
the TextEdit structure's destRect, txFont, txSize, and lineHeight fields. The middle block of the
doUpdateDocumentWindow code simply resets the values in these fields back to those that existed after
doGetDocument was called, and then calls TECalText to re-calculate the line starts and TEUpdate to draw
the text.

The second blocks saves the values in the TextEdit structure's destRect, txFont, txSize, and lineHeight
fields as they existed before the update event was received and the fourth block restores these settings.
The last two lines redraw the picture in the window.

doMenuChoice

If the user chose Page Setup.. from the File menu, doPageSetupDialog is called to display the Page Setup
dialog, handle user interaction within the dialog, and record the settings made by the user. If an error
is returned, doErrorAlert is called to present an alert advising of the error number.

If the user chose Print.. from the File menu, doPrintSettingsDialog is to display the Print dialog, handle
user interaction within the dialog, and record the settings made by the user. If no error is returned,
doPrinting is then called to perform the printing. If doPrinting returns an error, doErrorAlert is called
to present an alert advising of the error number.

If doPrintSettingsDialog returns an error, doPrinting is not called and doErrorAlert is called to present
an alert advising of the error number.

doCreateOrValidatePageFormat

doCreateOrValidatePageFormat is the first of the major printing functions. It is called, as their first
action, by doPageSetUpDialog and doPrintSettingsDialog - that is, whenever the user chooses Page Setup.. or
Print.. from the File menu. The main purpose of this function is to create a PMPageFormat object, assign
default parameter values to that object, and associate the object with the document's window or, if the
object has previously been created, simply validate the existing object.

The call to PMCreateSession creates a printing session object.

If a PMPageFormat object is not currently assigned to the pageFormat field of the window's document
structure, PMCreatePageFormat and PMSessionDefaultPageFormat are called to create a PMPageFormat object
and assign default parameters to it. The object is then associated with the document's window by
assigning the object to the relevant field of the window's document structure.

Version 1.0 Carbon Printing

On the other hand, if a PMPageFormat object is currently assigned to the pageFormat field of the window's
document structure, PMSessionValidatePageFormat is called to validate the object within the context of the
current printing session.

If no errors occurred, the PMPrintSession object is assigned to the relevant field of the document
window's document structure, otherwise both the PMPrintSession and PMPageFormat objects are released.

doPageSetUpDialog

doPageSetUpDialog is called when the user chooses Page Setup.. from the File menu. Its purpose is to
present the Page Setup dialog and modify the page setup information stored in the PMPageFormat object
associated with the document's window according to settings made by the user within the dialog.

The call to doCreateOrValidatePageFormat ensures that PMPageFormat and PMPrintSession objects have been
created and assigned to the relevant field of the window's document structure. The call to
PMSessionPageSetupDialog then presents the Page Setup dialog and handles all user interaction within the
dialog. If the user clicks the OK push button to dismiss the dialog, the PMPageFormat object will be
updated to reflect any changed settings made by the user. No updating occurs if the user clicks the
Cancel push button to dismiss the dialog.

When the dialog has been dismissed, PMRelease is called to release the PMPrintSession object.
doPrintSettingsDialog

doPrintSettingsDialog is called when the user chooses Print.. from the File menu. Its main purpose is to
create a PMPrintSettings object and associate it with the document's window, and present the Print dialog
and modify the print settings information stored in the PMPrintSettings object according to changed
settings made by the user within the dialog.

The call to doCreateOrValidatePageFormat ensures that PMPageFormat and PMPrintSession objects have been
created and assigned to the relevant field of the window's document structure. The call to
PMCreatePrintSettings then creates a PMPrintSettings object.

The call to PMSetJobNameCFString sets the print job name used by the printing system.
PMSessionDefaultPrintSettings is then called to assign default parameter values (number of copies, page
range, etc.) to the PMPrintSettings object, following which the PMPrintSettings object is assigned to the
relevant field of the document window's document structure.

The next block executes only if the program is running on Mac 0S X. PMSetPageRange sets the valid range
of pages that can be printed to 1-32000. (If the user enters values outside this range in the Print
dialog, the Carbon Printing Manager displays an "out-of-range" alert.) The next two calls set the default
first and last page numbers to be drawn in the relevant edit text fields in the Print dialog. Note that,
if kPMPrintAllPages is passed in PMSetlLastPage's last parameter, the All radio button in the Print dialog
will be selected when the dialog is displayed.

The Print dialog to be presented is to be customised. Accordingly, the first three lines inside the next
if block create universal procedure pointers for the initialisation, item evaluation, and event filter
functions contained in the source code file PrintDialogAppend.c.

PMSessionPrintDialogInit is called to initialise a custom Print dialog. On return, the global variable
gPMDialog contains a pointer to an initialised PMDialog object, ready for customisation. This pointer is
assigned to a global variable because the PMSessionPrintDialogMain function does not include a parameter
for passing this PMDialog object to the dialog initialization function.

PMSessionPrintDialogMain presents the customised Print dialog, the universal procedure pointer to the
initialisation function being passed in the fifth parameter.

If the user clicked the Print push button, when PMSessionPrintDialogMain returns, the PMPrintSettings
object will contain information on the settings displayed in the Print dialog (except for the settings in
the customised section of the dialog).

If an error occurred, or if the the user clicked the Cancel push button in the Print dialog, the
PMPrintSettings and PMPrintSession objects are released and disassociated from the window. In addition,
within the function doMenuChoice, the call to the function doPrinting will not occur.

doPrinting

doPrinting contains the printing loop.

Carbon Printing Version 1.0

After the current graphics port is saved for later restoration, PMGetFirstPage and PMGetlLastPage are
called to get the first and last page to print, as set in the Print dialog.

The next block is incidental to the demonstration, simply storing the first page, last page, and number of
copies information retrieved from the PMPrintSettings object in global variables so that they can later be
drawn in the Some Printing Information window.

PMGetAdjustedPageRect is then called to get the page rectangle, taking account of page orientation
setting, scale setting, and drawing resolution. The double values in the fields of this PMRect structure
are assigned to the (SIntle) fields of a normal Rect structure before that rectangle is passed to a
function which calculates the actual number of pages in the document.

If the calculated actual number of pages is less than the value returned by the call to PMGetLastPage, the
value in the variable lastPage is changed to the calculated number of pages.

For Mac 0S X only, PMSetFirstPage and PMSetlLastPage are called to set the first and actual last page in
the PMPrintSettings object. This ensures that the page number information displayed in the progress
dialog invoked during printing will be correct.

The printing loop is now entered. The first action is to call PMSessionBeginDocument to establish a
graphics context (PMPrintContext object) for imaging the document. As will be seen, a function exists to
obtain the graphics port (that is, the printing port) associated with this object.

The while loop spools all of the pages in the document, relying on the Carbon Printing Manager to print
the correct page range. Within the loop:

e GetPort is called to save the current graphics port.

e PMSessionBeginPage is called to initialise the printing port. (Note that, for Mac 0S 8/9, this
function may also be used to initialise a scaling rectangle for drawing the page, in which case the
address of a PMRect passed in the last parameter will be passed to the printer driver.)

e PMSessionGetGraphicsContext is called to obtain the current printing port, and SetPort is called to set
this port as the current port.

e doDrawPage is called to draw the specified page in the current printing port.
e SetPort is called to restore the saved graphics port.
e PMSessionEndPage is called to print the page.

After the pages have been spooled, PMSessionEndDocument is called to close the printing port. On Mac 0S
X, this call also dismisses the progress dialog.

Note that the printing loop does not have to concern itself with the number of copies, since this is
handled automatically by the Carbon Printing Manager.

Finally, the PMPrintSettings and PMPrintSession objects are released and disassociated from the document's
window, and the graphics port saved at function entry is restored.

doCalcNumberOfPages

doCalcNumberOfPages is called by doPrinting to calculate the actual number of pages in the document based
on the page rectangle passed to it.

The first line retrieves the handle to the specified window's document structure. The next two lines set
the current font and font size to the font number and size set by the user in the appended items in the
Print dialog. This allows the call to GetFontInfo to retrieve some relevant information about the font.

The next four lines change the values in the txFont, txSize, and lineHeight fields of the TextEdit
structure whose handle is stored in the window's document structure. (Note that information obtained by
the GetFontInfo call is used to calculate line height.)

The next three lines change the rectangle stored in the destRect field of the TextEdit structure to one
equal to the received page rectangle less 180 pixels in width and 270 pixels in height. (This smaller
rectangle is centred on the page rectangle both laterally and vertically.)

With these changes made, TECalText is called to recalculate the line starts. In addition to changing the
values in the lineStarts array in the TextEdit structure, this call will assign the new total number of
lines to the nLines field.

Version 1.0 Carbon Printing

The matter of the actual calculation of the number of pages now follows. The first line in the last block
gets the height of the previously defined destination rectangle. The next line calculates how many lines
of text will fit into that height. The third line then calculates the total number of rectangles (and
thus the number of pages) required to accommodate the whole of the text.

doDrawPage

doDrawPage is called by doPrinting to draw a specified page in the printing graphics port.

The first action is to set the printing graphics port's font and and font size to the font number and size
set by the user in the appended items in the Print dialog.

The next block retrieves a handle to the specified window's document structure, allowing handles to the
TextEdit structure and picture to be retrieved.

In the next block, the destination rectangle in the destRect field of the TextEdit structure is assigned
to a local variable, the height of this rectangle is assigned to a local variable, the lines per page is
calculated and assigned to a local variable, and the total number of lines is assigned to a local
variable.

In the next block, the first line gets the starting offset, that is, the offset from the first character
in the block of text to the first character in the first line of text for the specified page number. The
next four lines get the ending offset, that is, the offset to the last character in the last line of text
for the specified page.

The call to TENew creates a new monostyled TextEdit structure with the previously defined destination
rectangle passed in both the destination and view rectangle parameters. The following line gets a handle
to the actual text in the TextEdit structure. This handle is then locked preparatory to a call to
TEInsert. Using the offsets previously calculated, TEInsert then inserts the text for the current page
into the newly created TextEdit structure, an action which causes that text to be drawn in the printing
graphics port. The text having been drawn, the TextEdit structure is then disposed of.

If this is the first page, the next block draws the previously loaded picture at the top left of the
previously defined rectangle.

The last three lines draw the page number at the bottom left of the original page rectangle.
doDrawPrintinfo and doDrawRectStrings

doDrawPrintInfo is called when an update event is received for the Some Printing Information window.
Carbon Printing Manager accessor functions are then used to obtain information from the PMPageFormat
object associated with the document's window and draw that information in the window. In addition,
information retrieved from the PMPrintSettings, and saved to global variables within the function
doPrinting, is drawn in the window if the global variable doDrawPrintSettingsStuff is set to true.

doErrorAlert

doErrorAlert is called when the printing functions return an error other than the "user cancelled" error.
An alert showing the error code is displayed.

PrintDialogAppend.c

initialisationFunction

Recall that, in the function doPrintSettingsDialog, a universal procedure pointer to
initialisationFunction was passed in the myInitProc parameter of the PMSessionPrintDialogMain call.
PMSessionPrintDialogMain thus calls this function.

Recall also that the pointer to the initialised PMDialog object was assigned to a global variable
(gPMDialog) because the PMSessionPrintDialogMain function does not include a parameter for passing a
PMDialog object to a dialog initialisation function. At the first line, the pointer to the PMDialog
object is copied to the initialisation function's formal parameter pmDialog.

The call to PMGetDialogPtr gets a reference to the Print dialog dialog object.

The DITL to be appended to the dialog contains the following items:

e A pop-up menu for font selection.

e Three radio buttons for font size selection.

Carbon Printing Version 1.0

e A checkbox for selecting fractional widths on or off.
e A primary group box (text title variant).

GetResource loads the specified 'DITL' resource and gets a handle to it. CountDITL counts the current
number of items in the Print dialog. AppendDITL then appends the new items to the dialog. For some
printers on Mac 0S 8/9, this causes the dialog to expand downwards to accommodate the added items. For
others (for, example, the LaserWriter 8), and on Mac 0S X, the result of the AppendDITL call is that a
pane is created for the items and the name of the application is inserted into the menu of a pop-up group
box. When the item containing the application’s name is chosen from the pop-up menu, the pane is
displayed and the appended items are accessible.

The global variable gFirstAppendedItemNo is then assigned the item number in the new Print dialog item
list of the first appended item (the pop-up menu button). This will be required by the function
itemEvaluationFunction.

The next block calls CreateStandardFontMenu to create the menu for the pop-up menu button, which is then
assigned to the pop-up menu button by SetControlData. Note that the font number for the first item in the
menu is assigned to the global variable gFontNumber.

The next block selects the second radio (12pt) button and sets the global variable gFontSize to 12. The
next block unchecks the checkbox and sets fractional widths to off.

The printer driver's item evaluation function will be called upon by the item evaluation function
(itemEvaluationFunction) to handle mouse-downs in the Print dialog's standard items. Accordingly,
PMGetItemProc is called to assign the universal procedure pointer to the driver's evaluation function to a
global variable for later use. The call to PMSetItemProc makes itemEvaluationFunction the current item
evaluation function.

Finally, the call to PMSetModalFilterProc makes the application-defined (callback) function eventFilter
the event filter function for the Print dialog.

itemEvaluationFunction

itemEvaluationFunction handles item hits in the Print dialog. The item number of the item hit is received
in the second parameter.

At the first line, the item number of the item hit is "localised". This means that, for example, the
localised item number of the pop-up menu button will be 1. 1In other words, if the localised item number
is greater than 0, it will be the item number of one of the appended items; otherwise, it will be the item
number of one of the Print dialog's standard items.

If the localised item number is greater than @, and if it is the localised item number for the pop-up menu
button, the control's value (that is, the menu item number) is retrieved. GetMenuItemText is called to get
the text of the menu item, and GetFNum is called to get the font number for this font and assign it to the
relevant global variable.

If the localised item number is the localised item number for one of the radio buttons, all radio buttons
are unchecked, the radio button hit is checked, and the global variable which holds the current text size
is assigned the appropriate value. If the localised item number is the localised item number for the
checkbox, the current value of that control is flipped and SetFractEnable is called to set fractional
widths on or off as appropriate.

If the localised item number is @ or less, the item must be one of the Print dialog's standard items. 1In
this case, the printer driver's item evaluation function is called upon to handle the item hit.

eventFilter

eventFilter is identical to the custom event filter for modal dialogs introduced at Chapter 8. The use of
a the event filter is optional. Its use in this program simply allows the Print dialog, together with
windows belonging to background applications, to receive update events (required only on Mac 0S 8/9).

The Page Setup and Print dialogs in this demonstration program are application-modal. This is
because the AppendDITL method used to customise the Print dialog prevents that dialog from being
created as a window-modal (sheet) dialog. The basic modifications required to cause the dialogs to
be window-modal are as follows:

e Display the Print dialog using the function PMSessionPrintDialog and eliminate all code relating
to dialog customisation.

Version 1.0 Carbon Printing

e Immediately before the calls to PMSessionPageSetupDialog and PMSessionPrintDialog, call the
function PMSessionUseSheets, passing the parent window's reference in the documentWindow parameter
and a universal procedure pointer to an application-defined (callback) function in the

e Add two application-defined (callback) functions which perform the actions required immediately
following the dismissal of the dialogs, and modify the existing post-dismissal code accordingly.

Carbon Printing Version 1.0

	The Carbon Printing Manager
	Printing Sessions
	Categories of Carbon Printing Manager Functions

	Printer Drivers
	Types and Characteristics of Printer Drivers
	QuickDraw Printers
	PostScript Printers

	Background Printing and Spool Files

	Page and Paper Rectangles
	Page Rectangle
	Paper Rectangle

	Page Setup Dialogs and Print Dialogs
	Page Setup Dialog
	Displaying the Page Setup Dialog and Accessing Settings

	Print Dialog
	Displaying the Print Dialog and Accessing Settings

	Customised Page Setup and Print Dialogs
	Preserving the User's Printing Settings

	Printing Sessions — The PMPrintSession Object
	The PMPageFormat and PMPrintSettings Objects
	PMPageFormat Object
	Accessor Functions
	Assigning Default Parameters
	Validating a PMPageFormat Object

	PMPrintSettings Object
	Accessor Functions
	Assigning Default Parameters
	Validating a PMPrintSettings Object

	Printing a Document
	When the User Chooses Page Setup… From the File Menu
	When the User Chooses Print… From the File Menu
	The Printing Loop Function
	Call Sequence And Scope
	Sequence and Scope: Session Functions
	Sequence and Scope: Universal Functions

	Handling Printing Errors

	Text on the Screen and the Printed Page
	Customising the Page Setup and Print Dialogs
	The PMDialog Object
	Customising a Print Dialog

	Displaying Page Setup and Print Dialogs as Window-Modal (Sheet) Dialogs
	Saving and Retrieving a Page Format Object
	Printing From the Finder — Mac OS 8/9
	Main Carbon Printing Manager Constants, Data Types and Functions
	Demonstration Program CarbonPrinting Listing
	Demonstration Program CarbonPrinting Comments

